
3

Abstract
Content Based Image Retrieval, otherwise known as ‘CBIR’ is a method used to extract
visually similar images from a large database, based on the features of a given query
image. This project explores and presents a modified approach to CBIR by using artifi-
cial neural networks, as opposed to classical computer vision techniques. The method
presented in this report utilises a Siamese neural network paired with a variation of One
Shot Learning, which is trained on pairs of dissimilar images in order to extract image
feature vectors. Visual similarity is then deduced by utilising a distance function that
compares the distance between the two feature vectors returned by the network and this
will therefore provide a measure of similarity based on the image content learned by the
network.

4

1 - Executive Summary
The aim of this report is to present the history and current advancements in the field of
Content Based Image Retrieval (CBIR) with the experimental use of Artificial Neural
Networks. CBIR Systems are utilised in order to retrieve images based on features ex-
tracted by a computer vision algorithm, which can then be compared using a function
to deduce image similarity. Modern commercial approaches to CBIR have been in-
creasing in popularity, in 2001 Google launched their image search engine which re-
volutionised the way we search for images on the internet. CBIR systems allows a dis-
connect between the end user and the search query, with modern approaches allowing
computers to automatically label and identify an image based on its features alone. Fur-
ther to this, they are also incredibly useful for situation where there is a lack of image
metadata, which would semantically describe the image, allowing a system to infer
characteristics of the image based merely on its content.

Classical approaches to CBIR relied heavily on the use of embedded geometric and
spatial data such as colour, texture, shape and edges, which would be able to describe
an image. This data was segregated into two predominant classes, primitive features
such as those described geometrically and through colour and then logical features
such as the physical identity of the objects in given regions, both of which had to be
separable by an algorithm in order to correctly classify an image.

A more recent approach for extracting features from images requires the use of a con-
volutional neural network (CNN), as outlined by Koch et al. [23] which is essentially a
collection of various layers that all link together in order to extract information from a
given input. These can be applied to images in order to extract important features such
as colour, texture, shape and edges which are the four main constituents of an image
when being processed by a computer. The main downfall of a convolutional neural net-
work is its need for a vast amount of training data for each subset it is required to clas-
sify and in many cases, there is a sparse presence of data to begin with, which makes
training these types of network rather difficult.

In order to target these issues, many novel approaches have emerged, namely One-
Shot-Learning as outlined by Fei-Fei et al. in their report titled ‘One-Shot Learning of
Object Categories’ [22]. This report outlines a technique that requires only a small sub-
set of data per class in order to distinguish similarity between both seen and unseen
data. The ability to train a convolutional neural network with a much smaller subset of
data opens doors to a variety of applications that would usually not be possible, for in-
stance within areas of medicine where there is a lack of data to begin with.

Our network is based on the work of Koch et al. in their paper titled ‘Siamese Neural
Networks for One-shot Image Recognition’ [23], whereby we will implement a variation
of a standard CNN known as a Siamese Network. This architecture utilises two identical
networks that take two images as input and process them in order to determine their
relative ‘similarity’ by utilising a function that compares the distance between the ex-
tracted feature vectors for each image. The results displayed by our network were
rather surprising, performing adequately to begin with, but didn’t display a terrific
amount of improvement as the amount of time trained increased.

5

2 - Literature Review
2.1 - Classical Approaches of CBIR

In the past, CBIR techniques required manual feature extraction in order to correctly de-
duce visual similarity, but due to advancements within machine learning, this can now
largely be avoided. Initially, non-metadata based CBIR systems were utilised to aid the
sorting and searching of large image databases, without the need for information manu-
ally stored in text or annotations, which was likely input by a human. These systems
were developed to allow information to be gathered from an image by inspecting pixel
content alone, allowing the inference of different features.

2.1.1 - Colour

Many older CBIR techniques utilise colour histograms in order to extract the colour con-
tent distribution of an image [1]. The colour content distribution can be analysed
between images to denote their colour similarity measure. Many of these techniques are
largely similar and act by implementing a variation of basic techniques. A user can re-
trieve an image by specifying proportions of specific colours within a given threshold, the
most basic of these techniques is known as histogram intersection. This technique re-
turns the number of pixels from the input histogram that have corresponding pixels of the
same colour in the target image histogram, allowing the user to deduce a colour content
similarity measure [2].

A refined method described by Wei-Ying Ma et al. [3] describes the use of a colour
codebook to minimise the amount of colours used to represent homogeneous regions/
sections of an image, without detriment to perceptual quality. The approach described in
the paper uses the Generalised Lloyd Algorithm in order to quantise the overall colour
histogram of a given region. We will not discuss this algorithm in detail here, but rather
describe the representation of an image feature through the use of the colour codebook:

(1)

Above (1), we describe the colour feature, denoted as , where denotes the
index to the colour notebook and the percentage respectively. In this instance, the colour
codebook has a total of 256 colours. This colour feature representation is essentially a
compressed version of the full colour histogram for a given region. By computing this
metric, we are able to efficiently extract the most prominent colours from a given region,
minimising the mean squared error of the original colour content since there is a minute
subset of total colours in the codebook in comparison with the total amount of colours in
the entire image.

fc (Ij, Pj)

fc = {(Ij, Pj) | Ij ∈ {1, 2, …, 256}, 0 ≤ Pj ≤ 1

∑1≤ j≤N Pj = 1, and 1 ≤ j ≤ N}

6

2.1.2 - Shape

Shape data is traditionally very complex to interpret from images, predominantly due to a
loss in dimensionality when viewing an image in 2D. The 3D shape data, by definition, is
being projected into a 2D plane when represented as an image, causing depth, concav-
ity and other various measures to be semantically challenging to classify via the means
of an algorithm.

We can extract shape features in a variety of ways, one example is through the use of
regional shape data [4]. Given an image, we can denote the area of a region by analys-
ing the amount of pixels in the region. We can use a simple function that maps pixels
within the region as 1 and pixels outside of the region as 0, these are described as

 and respectively. The area of the region can be then be calcu-
lated as:

(2)

An alternative to using regions is through the use of a centroid distance function (CDF)
[5]. This is simply a calculation of the distance of the central point of a shape and its re-
spective boundaries.

We can calculate the centroid of a shape in a 2D image as follows:

(3)

In (3), denotes the centre along the x axis of the shape and denotes the centre
along the y axis - we then simply compute the sum of all points and then av-
erage them.

Finally, we can then calculate the distance to the boundaries from the centroid, where
 is the x axis boundary and is the y axis boundary:

(4)

Figure 1 (left) - A visual representation of centroid distances to the
boundaries of a shape in 2D [6].

f (x, y) = 1 f (x, y) = 0

gx gy
N (xi, yi)

x(n) y(n)

Arearegion = ∑(x,y)∈R 1

Centroid =
gx = 1

N ∑N
i=1 xi

gy = 1
N ∑N

i=1 yi

r (n) = [(x(n) − gx)2 + (y(n) − gy)2]
1
2

7

2.1.3 - Edge Detection

Edge detection is one of the most useful forms of feature extraction for CBIR Systems,
since it returns incredibly valuable information. Barrow et al. [7] discusses some of these
interpretations of edges which can be used to determine scene illumination variation,
distinguish between different materials and segment images by separating their fore-
ground and background.

Edge detector algorithms consist of a collection of mathematical approaches to detect
pixels within an image that are affected by brightness discontinuities. For instance, a two
lines of pixels which sharply change their respective brightness could indicate a differ-
ence in depth and thus an edge is present. There are a variety of methods used for edge
detection, but they can all be segregated into two main categories: search-based and
zero-crossing [8].

Zero-crossing methods use a second order derivative which is calculated from the im-
age, usually the Laplacian operator, but we will not delve into detail with these methods.

Instead, we can look at an example of search-based techniques. These methods use a
measure of edge strength, usually calculated by using a first order derivative, followed
by calculating a directional local maxima to classify the direction in which the edge is fa-
cing - usually the gradient direction is sufficient.

(5)

Above (5), we see the gradient operator, which is incredibly useful in calculating the dir-
ection at which the image function changes, which is represented as an angle , de-
scribed below (6).

(6)

One incredibly useful application of the gradient operator is within the Sobel operator [9],
which is a kernel (a small matrix, usually 3x3 or 5x5) that is convolved over the image in
order to approximate the horizontal and vertical derivatives.

(7)

F θ

∇F = [δF
δx

, δF
δy]

θ = tan−1[δF
δy

/ δF
δx]

Gx =
+1 0 −1
+2 0 −2
+1 0 −1

∗ F and Gy =
+1 +2 +1
0 0 0

−1 −2 −1
∗ F

8

The kernels above (7) denote the gradient of the horizontal and the vertical by
convolving each kernel over the image function , which in turn produces a map of
edges for the image. The Sobel Operator is incredibly simplistic and very easy to imple-
ment into a variety of systems, it also gives the orientation of the edges by applying (6)
as above [10].
The main issue with the Sobel Operator is the fact that noise causes a detrimental effect
on performance, namely, as noise within the image increases, the accuracy of the edges
degrades significantly.

A separate approach that targets these issues is the Canny Edge Detection algorithm.
This algorithm is part of the aforementioned search-based category of algorithms, but
unlike the Sobel Operator, this is a far more complex algorithm. It uses methods such as
gaussian blurring to remove noise, non-maximum suppression for removing any regions
which do not constitute a real edge and hysteresis thresholding that removes edges be-
low a certain threshold. By thresholding, the signal-to-noise ratio is drastically improved
as only strong, well defined edges remain after the computation. The main disadvantage
is the fact the computations take far longer and can cause tremendous slowdowns if ap-
plied to large image databases [10].

Figure 2 (below) - Canny Edge Detection algorithm pipeline [11].

2.1.4 - Texture Based Approaches

Texture is a marginally different form of feature that can be extracted from an image,
many other features rely on geometric data alone, such as edge detection, colour etc.
but extracting texture features relies more on spatial characteristics of image regions.
There are two main approaches to defining texture within an image, we can either use a
structural approach or a statistical approach [12]. Structurally, we define texture as a set
of texels, these are essentially texture pixels which make up a texture map over a region
of an image, these texels can be aligned in arrays to form textures.

In fact, we can actually use the previously described edge detection techniques in order
to infer some form of texture feature. The feature we are able to extract is known as the
busyness of a region of pixels [12].

Suppose we have a region of N pixels, and we apply the aforementioned edge detection
techniques and for each pixel we return two values; the gradient direction, denoted

, and the gradient magnitude, denoted , both of which can be calculated
with (5) and (6). We can then define the edgeness per unit area as

(8)

Gx Gy
F

p
dir(p) mag(p)

Fedgeness = |{p |Mag(p) ≥ T} |
N

9

where T is some threshold value.

Further to this, we can also use histograms to represent both the busyness and orienta-
tion of a given region and then analyse their respective similarities to each other.
We can describe each normalised histogram as and for the magnitude
and direction histograms respectively. From this we can now accurately give a quantitat-
ive textural description of a region as follows:

(9)

In order to deduce whether two regions, or images for that matter, are similar, we must
introduce the notion of a distance metric. These metrics are incredibly useful in returning
the similarity of any given feature vector, allowing them to be generalised not only to tex-
ture, but for any pair of vector-valued image features. There are three main distance
functions, namely Euclidian, Manhattan or L1 and Cosine similarity [13]. In fact, we can
actually represent Euclidian and Manhattan distance as instances of another metric
known as the Minkowski distance, defined as follows

(10)

where is some integer .

Interestingly, when we have the formula for the Manhattan (L1) distance and
when we have the formula for the Euclidian distance. So, if we let , and let
the two input vectors x and y be two n-valued histograms as mentioned above, we get
the L1 distance between the two textural feature vectors and thus can infer how similar
the two regions are:

(11)

2.2 - CBIR Techniques using Machine Learning

When discussing machine learning methods for CBIR, it’s important to note that the key
to any successful CBIR system is a precise and accurate feature extraction algorithm.
Many of the underlying techniques used within machine learning implementations are
synonymous to traditional CBIR methods, involving data pre-processing, feature extrac-
tion and evaluation. Yet instead of devising an algorithm to extract image features
ourselves, we train a neural network to infer image properties and learn feature repres-

Hmag(R) Hdir(R)

R

p > 0

p = 1
p = 2 p = 2

Fmagdir = (Hmag(R), Hdir(R))

dMinkowski(x, y) = (∑
i=1...n

xi − yi
p)

1
p

L1 (H1, H2) =
n

∑
i=1

H1[i] − H2[i]

10

entations by providing samples of training and test data. Our implementation relies heav-
ily on the use of Convolutional Neural Networks, which are explained below.

2.2.1 - Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialised type of network structure that
are used to learn on data with a grid-like topology [14]. For this reason, images are in-
credibly well suited for this type of network. CNNs function by replacing standard matrix
multiplication techniques with another linear operation, known as convolution. They are
incredibly efficient with matrix transformation based tasks, making them brilliant for im-
age data. Kernels are convolved within the hidden layers of the neural network, which
can be used as edge detectors or blur filters, similar to those mentioned in previous sec-
tions [14]. CNNs can also utilise the back-propagation algorithm [16] in order to increase
the network performance as it trains. Put simply, it steps back through the network and
adjusts each individual weight proportionally to the amount of error it contributes to the
network itself, over time, this tunes the network and will begin to produce better outputs.

Figure 3 (right) -
an example of
standard archi-
tecture used in a
deep convolu-
tional neural
network [15].

As you can see
in Figure 3, an
image is taken
as input to the
network, the im-
age is then con-
volved using a
5x5 kernel and
then passed to a pooling layer, this essentially reduces the spatial size of the represent-
ation of the data in order to reduce computation within the network. More convolutions /
max-pooling layers can be added or removed dependent on the architecture you choose
to adapt. We can see each layer description is represented as a triple (,

,), for example the Conv_1 layer is a 5x5 kernel that convolves
over the image forming a 24x24 output and this is repeated times within this layer.

After each layer has finished its computation, it’s
passed through some function that transforms the
summed weighted input from the layer into the activa-
tion of the next layer. There are a variety of activation
functions [17], including Sigmoid, Hyperbolic Tangent
and ReLU; we will discuss ReLU further as it’s very
commonly used within CNNs:

pixelsx
pixelsy operationsn

n1

11

Figure 4 (above) - The ReLU activation function [18].

Here, the ReLU function takes in the input and transforms it to 0 if it is < 0 or 1 if it’s
0. This leads to sparse activation of neurons, since it’s removing any values that are be-
low 0, resulting in a ‘lighter’ network.

However, in order to effectively train traditional deep CNNs, we usually require a lot of
labelled data, and sometimes this is not attainable, for instance in the medical field with
new disease etc. so this can be challenging, however, there are approaches such as
one-shot-learning that I will go on to discuss later, in order to tackle this issue.

2.2.2 - Siamese Neural Networks

In 1994, the first implementation of a Siamese Neural Network was proposed by Jane
Bromley et al. at AT&T [19]. The network was devised as a means of verifying handwrit-
ten signatures and used a pair of identical networks, hence the name ‘siamese network’.
This was revolutionary because the proposed model would extract a feature vector from
a pair of arbitrary signatures and then deduce their respective similarities - in this case,
the cosine distance metric is utilised. In order to verify a signature, an extracted feature
vector is compared with a preexisting database of signatures and will be able to display
all other similar signatures. If the input signature is within a certain similarity threshold
value, it is deemed as valid, else it is an invalid signature.

Siamese networks, even nowadays are rather sparse and are not widely used, but their
popularity is slowly gaining traction. The network pair used at AT&T uses a time-delay
network, which is largely outdated and instead, the common implementation nowadays
is to utilise a pair of CNNs in order to commence training, as described in SigNet [20].

Figure 5 (below) - An example of t
he revised Siamese Network architecture [21].

z ≥

12

As you can see, the each network shares weights and parameter updates throughout
the training of the network. The two identical CNNs are joined and their feature vectors

 and are input into a similarity metric, in this instance the Euclidian Distance
is calculated as the similarity measure.

It must be noted that Siamese Networks do not directly classify images, instead they just
tell us how similar two images are. This is fundamentally important for a CBIR system,
as it allows us to view all images that are visually similar from the database, by learning
and comparing the image features automatically through the use of CNNs.

2.2.3 - Feature Extraction in Siamese Nets with One Shot Learning

In the absence of vast amounts of training data, traditional CNNs would struggle to learn
different representations of classes and perform well at prediction of images. However,
we can use a method known as ‘One Shot Learning’ in order to train our network using
only one image to train our network, with remarkable performance. This method was in-
troduced by Fei-Fei et al. [22], whereby it was hypothesised that; ‘once a few categories
have been learned the hard way, some information may be abstracted from that process
to make learning further categories more efficient.’

The predominant theory surrounding this paper relies on a Bayesian approach to learn-
ing, and in the paper they discuss the notion of determining whether a certain item is
present within an image or not. We can compare the probability of only background clut-
ter being present vs. Instances where the item is present. To do this we require a model
of the aforementioned item that is gathered from a set of training images.

We can now begin to formulate the problem as follows:

Let I be the query image, which may contain an example of the foreground category, de-
noted by . The alternative is that it contains background clutter / noise belonging to a
generic background category denoted by . is the set of training images that we
have used as the foreground category. Now, the decision of whether this query image I
has the foreground object or not can be written in the following way using a bayesian
framework [22]:

(12)

Let (denote the ratio of the class posteriors, if (> T (some threshold value) we as-
sume that input image an instance of the item. This expression is a decision about
whether I contains the image in the foreground, with an absence of background clutter.

The beauty of this approach is that we need only 1 image denoting the item we are
searching for in order to train, leading to an incredibly valuable approach to implement
into a pre-existing siamese network.

F(Q) F(A)

Ofg
Obg It

R =
p(Ofg | I, It)
p(Obg | I, It)

=
p(I | It, Ofg)p(Ofg)
p(I | It, Obg)p(Obg)

13

3 - Methodology
CBIR systems have a plethora of uses, predominantly within database searching on im-
age websites or hospitals for example. For our CBIR implementation, we will be using a
technique described by Koch et al. [23] which utilises a Siamese Neural Network with a
One Shot Learning based approach. Our network will be implemented in Python using
the Tensorflow and Keras Libraries.

3.1 - Assumptions

The motivation for the implementation is as follows: we will be implementing an abstrac-
ted version of the architecture, using grayscale images of a variety of items. We can as-
sume for this reason that a use case could include a doctor / medical researcher with a
database of images of a variety of different scans of patients, with a variety of illnesses
and diseases. The doctor could then use this system to return visually similar scans, x-
rays for example, from patients who have similar presentations, in order to aid their dia-
gnosis by following up and viewing patient history etc. This data will likely be sparse, as
medical data is rather difficult to attain for research and thus the motivation for using a
One Shot Learning based approach. This will provide a level of abstraction for the net-
work to allow a simplistic implementation for testing and we will assume the training im-
ages have no associated semantic data, aside from the category of images they reside
within.

3.2 - Siamese Neural Network Implementation

Since Siamese Neural Networks are uncommon, there is a sparsity of papers. As men-
tioned above, we will be basing our implementation on that of Koch et al. [23] as it
provides a robust and well known approach. A model of one branch of the siamese net-
work is shown in Figure 6 (below).

Figure 6 (below) - An example of the network architecture [23].

This network will receive (,) as input, where and are two images, and will re-
turn a two feature vectors describing each image. From these two outputs, we can begin
to infer if the images are in fact the same by utilising a distance function. The function
noted in the paper is the Manhattan Distance (L1 Distance) and so we will be imple-
menting this into our network. Once this metric has been calculated, it is passed to a

x1 x2 x1 x2

14

sigmoid activation function which will constrain the value of the L1 distance to be
between 0 and 1 and this will denote the relative similarity of the image pair (,).

More formally, the network structure can be defined as mentioned in [23]:

In terms of network tuning, we used the ADAM optimiser [24] with a learning rate of
0.00006 and binary cross-entropy as our loss function due to the binary nature of our
problem i.e. a similarity value will be returned between 0 and 1. Also, the fact it makes
the network sparser will resulting in a much more time-efficient loss convergence rate.

Since we have a Siamese network, we take two inputs, one to denote each image and
these are fed into the input layer of each network, which has a relative resolution of (105
× 105) pixels. For all of the following convolutional layers, we ensure they all utilise the
ReLU activation function and a small L2 kernel regulariser value, this is around 0.0002.
Directly following the input layer, there is the first convolution layer of size 64 (10 × 10),
followed by a 64 (2 × 2) max pooling layer to reduce the size of the output and then an-
other convolutional layer of size 128 (7 × 7), followed by another identical 64 (2 × 2) max
pooling layer. Next, a 128 (4 × 4) convolution layer is followed by a 64 (2 × 2) max pool-
ing and then the final convolution layer is added, with size 256 (4 × 4). We then flatten
the output of this layer which is then followed by a dense layer of size 4096 with another
sigmoid activation function for the weights. Finally, there is the distance function that is
utilised by the network, in order to implement this using Keras, we must use a Lambda
layer [25] which allows us to calculate the Manhattan (L1) distance of the feature vec-
tors. Finally, the output of this is combined into a dense layer of size 1 using a sigmoid
activation function, which will then finally return the similarity value for the two input im-
ages.

3.2.1 - K-Way One Shot Learning Algorithm Implementation

For our network, we are assuming that there are a distinct lack of labels for the data and
that for each category, there is not likely to be an abundance of training images. For this
reason, we have opted to use the One Shot Learning approach, as discussed in 2.2.3.

However, upon further research, there may be a better implementation [26]; because of
this, we will propose the following amendments to the current One Shot Learning ap-
proach:

1. We will likely be using ‘Few-Shot Learning’ (K-Way One Shot Learning) as we may
have more than one item of data per category, but this is not guaranteed. Though we
may have more data, it is not a requirement for the network, so long as we have at
least one piece. This is essentially identical to the One Shot approach, but with po-
tential for more data per class.

2. We can utilise the modified approach in order to test and validate our network in re-
altime, as it trains on our inputs.

So, the modified approach is formulated as follows:

x1 x2

15

Let us assume we have 16 categories of data and we wish to test how our network is
performing as it trains, we can use 16-Way One Shot learning for example. Essentially
what this means is we are testing image pairs in order to deduce their similarity and
comparing them against their actual similarity measure. In the case of 16-Way One Shot
learning, we compare our query image to 16 other images, each of a different class
aside from one, returning a set of 16 different similarity scores for the query image.
Since all 16 images are different, aside from one which is identical, we know that one of
the images should hypothetically have the highest similarity measure out of all of the im-
ages. If this is not the case, then the model has predicted incorrectly and this can be fed
back to the network for future iterations. It is also important to mention that for cat-
egories of data, we do not have to restrict ourselves to use -way one shot learning, we
can use essentially any value of , so long as it lies between 2 and the amount of cat-
egories, in this case = . It is trivial that using a smaller value for will result in higher
chances of scoring correctly, but this will also not be as accurate when compared to us-
ing a larger value of , so we must choose a compromise between performance and
computation time.

3.2.2 - Hyper Parameter Selection

Our justification for hyper parameter selection relies solely on the research conducted by
Koch et al. [23] for this specific network. Since we are using a deep convolutional neural
network, training it on the CPU alone will cause a major detriment performance and time
taken to train the network. Because of this, we must use a GPU, yet cannot reap full be-
nefit without sufficient GPU optimisation knowledge within Keras. Because of this and
due to the time-constraints paired with this project and a lack of, we will be using the hy-
per parameter values outlined in the aforementioned paper:

1. We randomly initialised the weights and biases of our network according to the fol-
lowing constraints outlined by Koch et al:

Assume a normal distribution for both weights and biases.

(13)

2. Our learning rate was set to 0.00006 and we utilised the ADAM optimiser for this, as
mentioned in 3.2.

3.3 - Data Pre-Processing

When looking at the network architecture, we can see that the input layer requires an
image of dimensions (105 × 105) pixels. Most image databases do not contain images
of this size and so we must pre-process this data in order for it to fit the requirement of
our outlined network. Because of this, we must also ensure that our images are not less
than the required (105 × 105) pixels as this would require upscaling the image and pro-
ducing varied results due to the introduction of image artefacts.

K
K

K
K K

K

wlayer ∼ N (0.0,1e−2)
blayer ∼ N (0.5,1e−2)

16

So, for all images that require resizing in order to function correctly, we hypothesised an
approach to crop the images based on regions of interest using the Canny Edge Detect-
or mentioned in 2.1.3:

1. If not already, convert the desired image to grayscale.
2. Perform edge detection using the Canny approach, returning an array

of all points that are assumed to be an edge.
3. Divide the image into four quadrants, denote these etc.
4. For each image quadrant, count the amount of pixels present.
5. Select the quadrant with the most points. This is our region of interest

(ROI).
6. Crop the image outward from the ROI if necessary (i.e. region is smaller

than
the required (105 × 105) pixels.)

Unfortunately, after some testing and experimentation, this generated unreliable results.
In some images with a distinct foreground and background separation, this performed
adequately, generating some useable results, but images with a large amount of vari-
ation essentially ended up with regions that are unusable.

Figure 7 (below) - An example of hypothesised cropping algorithm.

Instead, we decided to use a trivial approach of downscaling each image to the required
(105 × 105) pixels by using a centre crop. Most of the items in our dataset were centred
and this provided the simplest approach for grayscale images; this also alleviated the
risk of losing data by simply downsampling the resolution and further compressing the
image by reducing resolution.

Aside from the cropping algorithm, any colour images were converted to grayscale using
the Python CV2 library and each class of data was reshaped to contain a uniform distri-
bution of images by randomly selecting a subset of images from each class.

Q1, Q2 . . .

17

3.4 - Image Similarity for Retrieval

In order for the network to actually function as an image retrieval system, we must be
able to extract image predictions from the network. We are able to use Keras’ inbuilt

 function in order to return the probabilities of the matching images.

We simply pair our query image with other random images within our dataset as follows

(14)

where is the image in the dataset, for some user-defined value .

This will generate a list of probabilities of the similarity of our query image with respect to
the dataset image by using the L1 distance metric described in 3.2, i.e. for 4 comparison
images:

(15)

model . predict()

imagei ith i

[S1 S2 S3 S4]

[(quer y, im age1) (quer y, im age2) (quer y, im age3) (quer y, im age4)]

18

4 - Tests, Analysis and Evaluation
4.1 - Network Performance Measure

In order to accurately quantify the performance of our network as it trains, we will be us-
ing K-One Shot Learning in order to test our network. Images are decided in advance if
they are similar within the dataset, because of this we use the category of image as the
benchmark of similarity. We are able to denote the performance by specifying the
amount of ‘guesses’ the network gets correct out of a number of one-shot verification
tasks.

The performance measure is formulated as follows

(16)

where is the amount of correct guesses of similar images with respect to the
query image and is the total number of guesses by the network.

4.2 - Image Datasets

For both training and validation we decided to use two datasets of varying size. The first
dataset that was utilised is the Omniglot dataset [27], the reasoning for this is that it is a
great benchmark for the network for a few reasons:

1. The dataset was purpose built for one-shot learning tasks, with a limited number of
examples per category, making it very useful to evaluate the performance of our
network.

2. The dataset was used in the paper by Koch et al. [23] but with far more images ap-
pended to it through the use of affine distortion of each character. We thought it
would be interesting to test the accuracy of the network on this dataset without the
added extra data, to test its performance on a sparser version of the dataset.

3. There are is a fixed number of character examples per category, which makes the
data slightly uniformly balanced as compared to the other dataset we are using, this
will be a good test for the overall network similarity accuracy.

4. The images are all grayscale and already fit the (105 x 105) pixel input requirement.

The second dataset used was the Stanford Dogs dataset [28] which is a subset of the
massive ImageNet database [29] consisting of millions of images. This was manually
divided into an 80:20 train:validation split, with random categories assigned to each.

Figure 8 (below) - Full dataset descriptions.

pcorrect
ktotal

performance (%) = (pcorrect

ktotal) × 100

19

4.3 - Network Testing

As mentioned before, in order to effectively train our network without exceptionally long
wait times we must utilise a powerful GPU in order to streamline this process. There are
a variety of different online machine learning cloud providers that offer GPU support in-
cluding Google Cloud, Amazon Web Services, Microsoft Azure and Vast.ai. However,
Google now offers a free service with a GPU known as ‘Google Colaboratory’, it gives us
limited, but suitable access to an Nvidia Tesla K80 GPU which is deemed to be around
5-10x faster than a CPU alone [30].

We tested the network with a variety of different parameters, all of which are discussed
beneath each test result. With regards to hyper parameter variation, we will change that
batch size, K-value for One Shot Learning, the number of One Shot tasks to evaluate
and the number of iterations for the network.

Each time the network is run, it is evaluated after a specified number of iterations using
K-One Shot Learning on a separate test set, the best outcome of this is then noted and
is the performance benchmark for that specific network configuration.

4.3.1 - Omniglot Dataset Benchmark

Since this is the dataset used within the paper by Koch et al. it was deemed the most
appropriate to be a benchmark of our network. A few tests were run with different para-
meters to see how these affected performance. The dataset has a total of 50 Alphabets
containing a total of 1623 Characters, 30 alphabets were used for training and the re-
maining 20 alphabets were used for validation. In total there were around 33,000 images
used between the train and validation sets.

Omniglot - Test 1

We first conducted a small test run of our network, to check it’s functionality on a
small number of iterations. In this case, we used a total of 1000 iterations with a
batch size of 32. Along with this, the network was evaluated every 200 iterations
and we used K-One Shot Learning with a value of along with a value of

.

The network performed very well with a performance measure of 100% on our
test set. In total, it took 3.1 minutes to train and converged to a loss value of
2.16.

Dataset Total Categories Total Images

Omniglot [45] 1,623 32,460

Modified Stanford Dogs
[46]

120 20,580

K = 4
Ktotal = 10

20

This loss value could have been optimised further, but the network did not run for
long enough to converge to a smaller value.

Omniglot - Test 2

For the next test of the network, we wanted to check it’s performance on a larger
number of iterations and now increase the value for a more accurate rep-
resentation of performance. In this case, we used a total of 20,000 iterations with
a batch size of 32. Along with this, the network was evaluated every 200 itera-
tions and we used K-One Shot Learning with a value of along with a
value of .

The network yet again performed very well with a performance measure of
83.2% on our test set. In total, it took 76.8 minutes to train and converged to a
loss value of 0.215.

Omniglot - Test 3

The third and final test of the network was a somewhat in-between configuration,
to see how well the network would perform with half of the number of iteration as
before and see how this affected its performance. In this case, we used a total of
10,000 iterations with a batch size of 32. Along with this, the network was evalu-
ated every 200 iterations and we used K-One Shot Learning with a value of

 along with a value of .

The network yet again performed worse than in our second test, but still surpris-
ingly well, with a performance measure of 78.0% on our test set. In total, it took
62.8 minutes to train and converged to a loss value of 0.244.

By halving the number of iterations, we can see there is a 6.6% performance de-
crease, but the network converged to a similar loss value around 22.3% faster
than before. So we can evidently see there is a balance that needs to be decided
based on network training speed and the performance of the network.

In comparison to the findings of Koch et al. [23] our network performed slightly worse
than their network on around 30,000 images to train. Our network performance was
83.2% after 20,000 iterations, compared to 90.61% in the paper. This could have been
attributed to a few factors, but the main being the fact the network could have been run
for more iterations in an attempt to increase performance.

4.3.2 - Modified Stanford Dogs Dataset

With this dataset, a couple of tests were performed, yet again with different parameters
to see how these affected performance. The dataset has a total of 20,580 images, split
80:20 between training and validation sets.

Ktotal

K = 20
Ktotal = 20

K = 20 Ktotal = 20

21

Modified Stanford - Test 1

For the first test, we used a total of 10,000 iterations with a batch size of 32.
Along with this, the network was evaluated every 200 iterations and we used K-
One Shot Learning with a value of along with a value of .

The network performed rather poorly when compared to the Omniglot dataset
with a performance measure of a mere 40% on our test set. In total, it took 76.8
minutes to train and converged to a loss value of 0.711.

Modified Stanford - Test 2

For the second test, we now wanted to see if increasing the total number of itera-
tions would result in a better performance score. Alongside this, we wanted to
see if we could further reduce our training loss value and so we modified a few
other parameters too. We used a total of 20,000 iterations with a batch size of
32. We also decided to change the interval of evaluation to 500 iterations, and
we used K-One Shot Learning with a value of along with a value of

.

The network performed somewhat better when compared to the first test, result-
ing in a performance of 62.1% on our test set. Surprisingly, the time taken to
train the network on this configuration with more iterations was in fact reduced by
32.3 minutes for a total of 44.5 minutes of training and converged to a loss value
of 0.708.

Surprisingly, this variant of the parameters lead to a similar loss value in less
time, but yielded higher performance overall. This is likely due to the ratio of the
rate of evaluation and total iterations. In this instance, we evaluated every 500
iterations of the total 20,000 iterations, this gives a ratio of 1:40, whereas in the
first test, we evaluated every 200 iterations of the total of 10,000 iterations which
gave a ratio of 1:50. So, in essence we evaluated the network less times over the
total number of iterations in test 2 which would have likely positively impacted the
training
time.

Figure 9 (right) -
Final loss func-
tion over 20,000

iterations for
Modified Stan-

ford Test 2.

K = 4 Ktotal = 5

K = 10
Ktotal = 5

22

We can clearly see here in figure 9 (above) that after around 3000 iterations, the net-
work loss does not seem to improve. This could be due to a number of reasons but
could be predominantly due to the chosen dataset and our cropping algorithm described
in 3.3 which may have had an impact on the network’s ability to minimise its total loss
farther than 0.7. Our hypothesis for increasing the performance of our network was
correct in predicting that the number of iterations increased will bring positive impact to
the overall performance of the network, but what was rather unexpected was the change
in total train time when reducing the amount of evaluations done by the network, even
with double the amount of iterations present. We can therefore deduce that as a proof of
concept, the use of K-One Shot Learning and Siamese networks does yield some prom-
ising results. Further tweaking and optimisation of the network would be required but it
performs adequately at 62% success rate when compared to random guessing which
would have yielded 25% and 10% performance for each of the Modified Stanford tests
respectively.

≈

≈

23

5 - Conclusion and Future Work
In this report, we have presented a modern and cutting-edge approach to the CBIR
problem, using Siamese Neural Networks and a modified one-shot learning approach.
The results attained show an 62% success rate for multiple classes which has been
shown to be far superior to randomised guessing. These results however do not match
that of Koch et al. [23], but this may be due to differences in datasets, pre-processing
and network optimisation. In comparison, this approach provides a modern method of
image retrieval without the need for semantic image labels or metadata, which provides
a solution toward many industries with a lack of sufficient data (i.e. medical research.)

While this implementation provides a somewhat decent method of retrieval, there are
associated social, ethical and legal issues that have to be addressed. A major example
of an ethical and legal issue lies within the field of medicine, if this type of system were
to be used in order to aid the diagnosis of a patient, it’s current success rate alone would
not be a feasible method in order to treat these patients. A recent article discussed the
factors associated with computer aided diagnosis of breast lesions [31] and concluded
that specific visual presentations of these specific types of lesions are more likely to pro-
duce false results: ‘Larger benign lesions, the presence of lesion calcifications, and high
degrees of vascularity are likely to show false-positive results. Smaller malignant lesions
and the absence of calcifications are likely to show false-negative results.’

Given more time, it would have been beneficial to create a generalised version of this
network to function with a variety of different images. Our network was hindered by the
fact only grayscale images were being used, by implementing the use of colour and oth-
er features present in many of the classical CBIR techniques, we may have yielded bet-
ter performance and potentially built a network that generalises features better.

≈

24

6 - Bibliography
[1] - J. Eakins and M. Graham, “Content-based image retrieval,” Content-based image
retrieval by Eakins, John, Graham, Margaret, 1999.

[2] - I. W. J.. Aloimonos, R. Bajcsy, D. H. Ballard, C. M. B. D.H.. Ballard, I. Biederman, B.
A. W. D.H.. Brainard, D. Chapman, J. A. Feldman, Y. Y. J.A.. Feldman, D. A. Forsyth, S.
A. S. G.J.. Klinker, A. J. D. J.J.. Koenderink, M. D. Z. P.. Lennie, P. P. J.. Malik, B. W.
L.T.. Maloney, W. T. N. J.H.R.. Maunsell, R. C. Nelson, K. P. R.. Ohlander, K. S. J.. Rub-
ner, A. Treisman, and A. L. Yarbus, “Color indexing,” International Journal of Computer
Vision, 01-Jan-1988.

[3] - W.-Y. Ma and B. S. Manjunath, “NeTra: A toolbox for navigating large image data-
bases,” 01-May-1999.

[4] - J. Liu and Y. Shi, “Image Feature Extraction Method Based on Shape Characterist-
ics and Its Application in Medical Image Analysis,” SpringerLink, 20-Aug-2011.

[5] - R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using
MATLAB, Vol.2: Gatesmark Publishing Knoxville, 2009.

[6] - P. Arjun et al., “Compact centroid distance shape descriptor based on object area
normalization - IEEE Conference Publication,” 08-May-2014.

[7] - H. G. Barrow and J. M. Tenenbaum, “Interpreting Line Drawings as Three-Dimen-
sional Surfaces,” 1981.

[8] - H. S. Bhadauria, A. Singh, and A. Kumar, “Comparison between Various Edge De-
tection Methods on Satellite Image,” CORE, 2013. [Online].

[9] - R. F. et al., “Sobel Edge Detector,” Feature Detectors - Sobel Edge Detector, 2003.

[10] - D. Kim, “Sobel Operator and Canny Edge Detector ECE 480,” 2013. [Online].

[11] - B. Crnokic et al., “Comparision of Edge Detection Methods for Obstacles ...,” 2016.
[Online].

[12] - L. G. Shapiro and G. C. Stockman, “Section 7 - Texture,” in Computer vision, Up-
per Saddle River, NJ: Prentice Hall, 2001.

[13] - S. Ontañón, “An Overview of Distance and Similarity Functions for Structured
Data,” NASA/ADS, 2020. [Online].

[14] - K. P. Murphy, M. Kejriwal, C. Knoblock, and P. Szekely, “Deep Learning,” The MIT
Press, 2016. [Online].

[15] - S. Saha, “A Comprehensive Guide to Convolutional Neural Networks ,” Medium,
17-Dec-2018. [Online].

25

[16] - “Backpropagation,” Backpropagation - ML Glossary documentation, 2017. [Online].

[17] - A. F. M. Agarap, “Deep Learning using Rectified Linear Units (ReLU),” 07-
Feb-2019. [Online].

[18] - K. Sarkar, “ReLU : Not a Differentiable Function: Why used in Gradient Based Op-
timization?,” Medium, 31-May-2018. [Online].

[19] - J. Bromley et al., “Signature Verification using a 'Siamese' Time Delay Neural ...,”
1994. [Online].

[20] - S. Dey, A. Dutta, J. I. Toledo, S. K. Ghosh, J. Llados, and U. Pal, “SigNet: Convolu-
tional Siamese Network for Writer Independent Offline Signature Verification,” arXiv.org,
30-Sep-2017. [Online].

[21] - A. Das et al., “Together we stand: Siamese Networks for Similar Question ...,” Jan-
2016. [Online].

[22] - L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,”
NYU Scholars, 20-Aug-2015. [Online].

[23] - G. Koch et al., “Siamese Neural Networks for One-shot Image Recognition,” 2015.
[Online].

[24] - D. P. Kingma and J. Ba, “ADAM: A Method for Stochastic Optimization,” arXiv.org,
30-Jan-2017. [Online].

[25] - K. Team, “Keras documentation: Lambda layer,” Keras. [Online].

[26] - H. Sankesara, “N-Shot Learning: Learning More with Less Data,” FloydHub Blog,
16-Aug-2019. [Online].

[27] - B. Lake, “brendenlake/omniglot,” GitHub, 13-Feb-2019. [Online].

[28] - Aditya Khosla et al. “Stanford Dogs dataset for Fine-Grained Visual
Categorization.” , Stanford University [Online].

[29] - ImageNet. [Online].

[30] - “Deep Learning Benchmarks of NVIDIA Tesla P100 PCIe, Tesla K80, and Tesla
M40 GPUs,” Microway, 30-Jan-2017. [Online].

[31] - J.-Y. W. et al., “Computer-Aided Diagnosis of Solid Breast Lesions With Ultra-
sound: Factors Associated With False-negative and False-positive Results,” Journal of
ultrasound in medicine : official journal of the American Institute of Ultrasound in Medi-
cine, Dec-2019. [Online].

	Abstract
	1 - Executive Summary
	2 - Literature Review
	2.1 - Classical Approaches of CBIR
	2.1.1 - Colour
	2.1.2 - Shape
	2.1.3 - Edge Detection
	2.1.4 - Texture Based Approaches
	2.2 - CBIR Techniques using Machine Learning
	2.2.1 - Convolutional Neural Networks
	2.2.2 - Siamese Neural Networks
	2.2.3 - Feature Extraction in Siamese Nets with One Shot Learning
	3 - Methodology
	3.1 - Assumptions
	3.2 - Siamese Neural Network Implementation
	3.2.1 - K-Way One Shot Learning Algorithm Implementation
	3.2.2 - Hyper Parameter Selection
	3.3 - Data Pre-Processing
	3.4 - Image Similarity for Retrieval
	4 - Tests, Analysis and Evaluation
	4.1 - Network Performance Measure
	4.2 - Image Datasets
	4.3 - Network Testing
	4.3.1 - Omniglot Dataset Benchmark
	Omniglot - Test 1
	Omniglot - Test 2
	Omniglot - Test 3
	4.3.2 - Modified Stanford Dogs Dataset
	Modified Stanford - Test 1
	Modified Stanford - Test 2
	5 - Conclusion and Future Work
	6 - Bibliography

